3.2.67 \(\int \frac {1}{x^3 (3+4 x^3+x^6)} \, dx\) [167]

3.2.67.1 Optimal result
3.2.67.2 Mathematica [A] (verified)
3.2.67.3 Rubi [A] (verified)
3.2.67.4 Maple [C] (verified)
3.2.67.5 Fricas [A] (verification not implemented)
3.2.67.6 Sympy [C] (verification not implemented)
3.2.67.7 Maxima [A] (verification not implemented)
3.2.67.8 Giac [A] (verification not implemented)
3.2.67.9 Mupad [B] (verification not implemented)

3.2.67.1 Optimal result

Integrand size = 16, antiderivative size = 119 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=-\frac {1}{6 x^2}+\frac {\arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}-\frac {\arctan \left (\frac {\sqrt [3]{3}-2 x}{3^{5/6}}\right )}{18 \sqrt [6]{3}}-\frac {1}{6} \log (1+x)+\frac {\log \left (\sqrt [3]{3}+x\right )}{18\ 3^{2/3}}+\frac {1}{12} \log \left (1-x+x^2\right )-\frac {\log \left (3^{2/3}-\sqrt [3]{3} x+x^2\right )}{36\ 3^{2/3}} \]

output
-1/6/x^2-1/54*3^(5/6)*arctan(1/3*(3^(1/3)-2*x)*3^(1/6))-1/6*ln(1+x)+1/54*3 
^(1/3)*ln(3^(1/3)+x)+1/12*ln(x^2-x+1)-1/108*3^(1/3)*ln(3^(2/3)-3^(1/3)*x+x 
^2)+1/6*arctan(1/3*(1-2*x)*3^(1/2))*3^(1/2)
 
3.2.67.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.95 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=\frac {1}{108} \left (-\frac {18}{x^2}-2\ 3^{5/6} \arctan \left (\frac {\sqrt [3]{3}-2 x}{3^{5/6}}\right )-18 \sqrt {3} \arctan \left (\frac {-1+2 x}{\sqrt {3}}\right )-18 \log (1+x)+2 \sqrt [3]{3} \log \left (3+3^{2/3} x\right )+9 \log \left (1-x+x^2\right )-\sqrt [3]{3} \log \left (3-3^{2/3} x+\sqrt [3]{3} x^2\right )\right ) \]

input
Integrate[1/(x^3*(3 + 4*x^3 + x^6)),x]
 
output
(-18/x^2 - 2*3^(5/6)*ArcTan[(3^(1/3) - 2*x)/3^(5/6)] - 18*Sqrt[3]*ArcTan[( 
-1 + 2*x)/Sqrt[3]] - 18*Log[1 + x] + 2*3^(1/3)*Log[3 + 3^(2/3)*x] + 9*Log[ 
1 - x + x^2] - 3^(1/3)*Log[3 - 3^(2/3)*x + 3^(1/3)*x^2])/108
 
3.2.67.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.18, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {1704, 27, 1752, 750, 16, 1142, 25, 1082, 217, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (x^6+4 x^3+3\right )} \, dx\)

\(\Big \downarrow \) 1704

\(\displaystyle \frac {1}{6} \int -\frac {2 \left (x^3+4\right )}{x^6+4 x^3+3}dx-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{3} \int \frac {x^3+4}{x^6+4 x^3+3}dx-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 1752

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \int \frac {1}{x^3+3}dx-\frac {3}{2} \int \frac {1}{x^3+1}dx\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\int \frac {2 \sqrt [3]{3}-x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx}{3\ 3^{2/3}}+\frac {\int \frac {1}{x+\sqrt [3]{3}}dx}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \int \frac {2-x}{x^2-x+1}dx+\frac {1}{3} \int \frac {1}{x+1}dx\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\int \frac {2 \sqrt [3]{3}-x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \int \frac {2-x}{x^2-x+1}dx+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\frac {3}{2} \sqrt [3]{3} \int \frac {1}{x^2-\sqrt [3]{3} x+3^{2/3}}dx-\frac {1}{2} \int -\frac {\sqrt [3]{3}-2 x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\frac {3}{2} \int \frac {1}{x^2-x+1}dx-\frac {1}{2} \int -\frac {1-2 x}{x^2-x+1}dx\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\frac {3}{2} \sqrt [3]{3} \int \frac {1}{x^2-\sqrt [3]{3} x+3^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{3}-2 x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\frac {3}{2} \int \frac {1}{x^2-x+1}dx+\frac {1}{2} \int \frac {1-2 x}{x^2-x+1}dx\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{3}-2 x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx+3 \int \frac {1}{-\left (1-\frac {2 x}{\sqrt [3]{3}}\right )^2-3}d\left (1-\frac {2 x}{\sqrt [3]{3}}\right )}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\frac {3}{2} \int \frac {1}{x^2-x+1}dx+\frac {1}{2} \int \frac {1-2 x}{x^2-x+1}dx\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{3}-2 x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx-\sqrt {3} \arctan \left (\frac {1-\frac {2 x}{\sqrt [3]{3}}}{\sqrt {3}}\right )}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\frac {3}{2} \int \frac {1}{x^2-x+1}dx+\frac {1}{2} \int \frac {1-2 x}{x^2-x+1}dx\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{3}-2 x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx-\sqrt {3} \arctan \left (\frac {1-\frac {2 x}{\sqrt [3]{3}}}{\sqrt {3}}\right )}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\frac {1}{2} \int \frac {1-2 x}{x^2-x+1}dx-3 \int \frac {1}{-(2 x-1)^2-3}d(2 x-1)\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{3}-2 x}{x^2-\sqrt [3]{3} x+3^{2/3}}dx-\sqrt {3} \arctan \left (\frac {1-\frac {2 x}{\sqrt [3]{3}}}{\sqrt {3}}\right )}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\frac {1}{2} \int \frac {1-2 x}{x^2-x+1}dx+\sqrt {3} \arctan \left (\frac {2 x-1}{\sqrt {3}}\right )\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {-\sqrt {3} \arctan \left (\frac {1-\frac {2 x}{\sqrt [3]{3}}}{\sqrt {3}}\right )-\frac {1}{2} \log \left (x^2-\sqrt [3]{3} x+3^{2/3}\right )}{3\ 3^{2/3}}+\frac {\log \left (x+\sqrt [3]{3}\right )}{3\ 3^{2/3}}\right )-\frac {3}{2} \left (\frac {1}{3} \left (\sqrt {3} \arctan \left (\frac {2 x-1}{\sqrt {3}}\right )-\frac {1}{2} \log \left (x^2-x+1\right )\right )+\frac {1}{3} \log (x+1)\right )\right )-\frac {1}{6 x^2}\)

input
Int[1/(x^3*(3 + 4*x^3 + x^6)),x]
 
output
-1/6*1/x^2 + ((-3*(Log[1 + x]/3 + (Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] - Lo 
g[1 - x + x^2]/2)/3))/2 + (Log[3^(1/3) + x]/(3*3^(2/3)) + (-(Sqrt[3]*ArcTa 
n[(1 - (2*x)/3^(1/3))/Sqrt[3]]) - Log[3^(2/3) - 3^(1/3)*x + x^2]/2)/(3*3^( 
2/3)))/2)/3
 

3.2.67.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1704
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_ 
Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1) 
)), x] - Simp[1/(a*d^n*(m + 1))   Int[(d*x)^(m + n)*(b*(m + n*(p + 1) + 1) 
+ c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{ 
a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && 
LtQ[m, -1] && IntegerQ[p]
 

rule 1752
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) 
   Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   I 
nt[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2 
, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 
 - 4*a*c] ||  !IGtQ[n/2, 0])
 
3.2.67.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.07 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.50

method result size
risch \(-\frac {1}{6 x^{2}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (9 \textit {\_Z}^{3}-1\right )}{\sum }\textit {\_R} \ln \left (x +3 \textit {\_R} \right )\right )}{18}+\frac {\ln \left (x^{2}-x +1\right )}{12}-\frac {\sqrt {3}\, \arctan \left (\frac {2 \left (x -\frac {1}{2}\right ) \sqrt {3}}{3}\right )}{6}-\frac {\ln \left (x +1\right )}{6}\) \(59\)
default \(-\frac {1}{6 x^{2}}-\frac {\ln \left (x +1\right )}{6}+\frac {3^{\frac {1}{3}} \ln \left (3^{\frac {1}{3}}+x \right )}{54}-\frac {3^{\frac {1}{3}} \ln \left (3^{\frac {2}{3}}-3^{\frac {1}{3}} x +x^{2}\right )}{108}+\frac {3^{\frac {5}{6}} \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \,3^{\frac {2}{3}} x}{3}-1\right )}{3}\right )}{54}+\frac {\ln \left (x^{2}-x +1\right )}{12}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{6}\) \(89\)

input
int(1/x^3/(x^6+4*x^3+3),x,method=_RETURNVERBOSE)
 
output
-1/6/x^2+1/18*sum(_R*ln(x+3*_R),_R=RootOf(9*_Z^3-1))+1/12*ln(x^2-x+1)-1/6* 
3^(1/2)*arctan(2/3*(x-1/2)*3^(1/2))-1/6*ln(x+1)
 
3.2.67.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.06 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=\frac {6 \cdot 9^{\frac {1}{6}} \sqrt {3} x^{2} \arctan \left (\frac {1}{27} \cdot 9^{\frac {1}{6}} {\left (2 \cdot 9^{\frac {2}{3}} \sqrt {3} x - 3 \cdot 9^{\frac {1}{3}} \sqrt {3}\right )}\right ) - 9^{\frac {2}{3}} x^{2} \log \left (3 \, x^{2} - 9^{\frac {2}{3}} x + 3 \cdot 9^{\frac {1}{3}}\right ) + 2 \cdot 9^{\frac {2}{3}} x^{2} \log \left (3 \, x + 9^{\frac {2}{3}}\right ) - 54 \, \sqrt {3} x^{2} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + 27 \, x^{2} \log \left (x^{2} - x + 1\right ) - 54 \, x^{2} \log \left (x + 1\right ) - 54}{324 \, x^{2}} \]

input
integrate(1/x^3/(x^6+4*x^3+3),x, algorithm="fricas")
 
output
1/324*(6*9^(1/6)*sqrt(3)*x^2*arctan(1/27*9^(1/6)*(2*9^(2/3)*sqrt(3)*x - 3* 
9^(1/3)*sqrt(3))) - 9^(2/3)*x^2*log(3*x^2 - 9^(2/3)*x + 3*9^(1/3)) + 2*9^( 
2/3)*x^2*log(3*x + 9^(2/3)) - 54*sqrt(3)*x^2*arctan(1/3*sqrt(3)*(2*x - 1)) 
 + 27*x^2*log(x^2 - x + 1) - 54*x^2*log(x + 1) - 54)/x^2
 
3.2.67.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.04 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.08 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=- \frac {\log {\left (x + 1 \right )}}{6} + \left (\frac {1}{12} - \frac {\sqrt {3} i}{12}\right ) \log {\left (x + \frac {1093}{244} - \frac {1093 \sqrt {3} i}{244} + \frac {787320 \left (\frac {1}{12} - \frac {\sqrt {3} i}{12}\right )^{4}}{61} \right )} + \left (\frac {1}{12} + \frac {\sqrt {3} i}{12}\right ) \log {\left (x + \frac {1093}{244} + \frac {787320 \left (\frac {1}{12} + \frac {\sqrt {3} i}{12}\right )^{4}}{61} + \frac {1093 \sqrt {3} i}{244} \right )} + \operatorname {RootSum} {\left (52488 t^{3} - 1, \left ( t \mapsto t \log {\left (\frac {787320 t^{4}}{61} + \frac {3279 t}{61} + x \right )} \right )\right )} - \frac {1}{6 x^{2}} \]

input
integrate(1/x**3/(x**6+4*x**3+3),x)
 
output
-log(x + 1)/6 + (1/12 - sqrt(3)*I/12)*log(x + 1093/244 - 1093*sqrt(3)*I/24 
4 + 787320*(1/12 - sqrt(3)*I/12)**4/61) + (1/12 + sqrt(3)*I/12)*log(x + 10 
93/244 + 787320*(1/12 + sqrt(3)*I/12)**4/61 + 1093*sqrt(3)*I/244) + RootSu 
m(52488*_t**3 - 1, Lambda(_t, _t*log(787320*_t**4/61 + 3279*_t/61 + x))) - 
 1/(6*x**2)
 
3.2.67.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.75 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=\frac {1}{54} \cdot 3^{\frac {5}{6}} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x - 3^{\frac {1}{3}}\right )}\right ) - \frac {1}{6} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - \frac {1}{108} \cdot 3^{\frac {1}{3}} \log \left (x^{2} - 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right ) + \frac {1}{54} \cdot 3^{\frac {1}{3}} \log \left (x + 3^{\frac {1}{3}}\right ) - \frac {1}{6 \, x^{2}} + \frac {1}{12} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{6} \, \log \left (x + 1\right ) \]

input
integrate(1/x^3/(x^6+4*x^3+3),x, algorithm="maxima")
 
output
1/54*3^(5/6)*arctan(1/3*3^(1/6)*(2*x - 3^(1/3))) - 1/6*sqrt(3)*arctan(1/3* 
sqrt(3)*(2*x - 1)) - 1/108*3^(1/3)*log(x^2 - 3^(1/3)*x + 3^(2/3)) + 1/54*3 
^(1/3)*log(x + 3^(1/3)) - 1/6/x^2 + 1/12*log(x^2 - x + 1) - 1/6*log(x + 1)
 
3.2.67.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.76 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=\frac {1}{54} \cdot 3^{\frac {5}{6}} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x - 3^{\frac {1}{3}}\right )}\right ) - \frac {1}{6} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - \frac {1}{108} \cdot 3^{\frac {1}{3}} \log \left (x^{2} - 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right ) + \frac {1}{54} \cdot 3^{\frac {1}{3}} \log \left ({\left | x + 3^{\frac {1}{3}} \right |}\right ) - \frac {1}{6 \, x^{2}} + \frac {1}{12} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{6} \, \log \left ({\left | x + 1 \right |}\right ) \]

input
integrate(1/x^3/(x^6+4*x^3+3),x, algorithm="giac")
 
output
1/54*3^(5/6)*arctan(1/3*3^(1/6)*(2*x - 3^(1/3))) - 1/6*sqrt(3)*arctan(1/3* 
sqrt(3)*(2*x - 1)) - 1/108*3^(1/3)*log(x^2 - 3^(1/3)*x + 3^(2/3)) + 1/54*3 
^(1/3)*log(abs(x + 3^(1/3))) - 1/6/x^2 + 1/12*log(x^2 - x + 1) - 1/6*log(a 
bs(x + 1))
 
3.2.67.9 Mupad [B] (verification not implemented)

Time = 8.46 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.99 \[ \int \frac {1}{x^3 \left (3+4 x^3+x^6\right )} \, dx=\frac {3^{1/3}\,\ln \left (x+3^{1/3}\right )}{54}-\frac {\ln \left (x+1\right )}{6}+\ln \left (x-\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{12}+\frac {\sqrt {3}\,1{}\mathrm {i}}{12}\right )-\ln \left (x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (-\frac {1}{12}+\frac {\sqrt {3}\,1{}\mathrm {i}}{12}\right )-\frac {1}{6\,x^2}-\ln \left (x-\frac {3^{1/3}}{2}-\frac {3^{5/6}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {3^{1/3}}{108}+\frac {3^{5/6}\,1{}\mathrm {i}}{108}\right )-\ln \left (x-\frac {3^{1/3}}{2}+\frac {3^{5/6}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {3^{1/3}}{108}-\frac {3^{5/6}\,1{}\mathrm {i}}{108}\right ) \]

input
int(1/(x^3*(4*x^3 + x^6 + 3)),x)
 
output
(3^(1/3)*log(x + 3^(1/3)))/54 - log(x + 1)/6 + log(x - (3^(1/2)*1i)/2 - 1/ 
2)*((3^(1/2)*1i)/12 + 1/12) - log(x + (3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/ 
12 - 1/12) - 1/(6*x^2) - log(x - 3^(1/3)/2 - (3^(5/6)*1i)/2)*(3^(1/3)/108 
+ (3^(5/6)*1i)/108) - log(x - 3^(1/3)/2 + (3^(5/6)*1i)/2)*(3^(1/3)/108 - ( 
3^(5/6)*1i)/108)